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Abstract

A general family of asymptotically stabilizing control laws is introduced for a class of
nonlinear H_aniltoniaa systems. The inherent passivity property of this class of systems

and the Passivity Theorem are used to show the closed-loop input/output stability

which is then related to the internal state space stability through the stabilizability

and detectabilty condition. Applications of these results include fully actuated robots,

flexibe joint robots, and robots with link fle_bility.
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1 Introduction

Inherent passivity in fully actuated mechanical systems has long been recognized and ex-

ploited for their stabilization [1, 2]. However, when some degrees of freedom are not directly

actuated, for example, in flexible robots, the passivity property becomes less useful as damp-

ing can only be directly added in certain subspace.

In this paper, we present a family of asymptotically stable set point and tracking con-

trollers for a class of mechanical systems. The approach is applicable even when the open-

loop system has no inherent damping. The results are then applied to some common models

of flexible joint robots and flexible beams.
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The basic controller structure is the sum of a model-based feedforward and a model-

independent feedback. The feedforward is chosen to form an error equation so that the

ensuing steps for feedback stabilization can be applied:

• Choose a static feedback so that the system is passive, stabilizable and detectable with

respect to a particular input/output pair (usually corresponding to the force/torque

inputs and velocity measurements of the degrees of freedom that are actuated).

• Choose a strictly passive feedback between the passive input/output pair. From the

Passivity Theorem, the closed-loop system is input/output stable.

• If the feedback is chosen to preserve stabilizability and detectability, the internal states

are also asymptotically stable.

_ -Passivity property for flexible jointed robot was recognized in [3] and indeed was used

in a PD-type controller design. The method requires inherent damping in both joints and

motqrs. Similar results without requiring the inherent damping has recently appeared in [4].

The result on PD stabilization of flexible beams was first shown in [5]. Our approach was

independently conceived and contains a number of unique features as summarized below:

1. Both flexible joint robots and flexible beam are considered as special cases of a more

general framework of under-actuated Hamiltonian systems with elastic coupling be-

tween actuated and un-actuated degrees of freedom.

2. Any passive feedback is allowed without affecting stability. Examples have shown that

higher order feedback (in contrast to the usual proportional--derivative (PD)) can lead

'_' significant improved performance.

3. Generalization to tracking control has been addressed from various perspectives.

There has been many published work on applying exact linearization for the control of

flexible robots, for a summary see [6]. In general, this approach requires the exact model

information, linear spring assumption, and zero gyroscopic force coupling. Furthermore, the

feedforward compensation (for linearization) and the feedback stabilization are intertwined

and errors in the feedforward may affect the closed loop stability in an adverse way. In

contrast, our approach requires much less model information in the set point control case

(only the spring characteristics is needed), can be extended to the nonlinear spring case

and fully coupled dynamic model, and the additive separation between the feedback and

feedforward implies that error in feedforward does not lead to instability. The price to pay

is that the closed loop performance cannot be arbitrarily assigned.

For flexible beams (and more generally, flexible structures), the importance of passivity

was well recognized in [7]. But only the set point control was considered and the uniform

damping for flexible modes was assumed. There was also some work involving open-loop,

computed torque type of control [8, 9]. We drew from this work for the construction of

the feedforward trajectory for the error system. A general passive controller design for fully

actuated arms was proposed in [10] which is later appiied to a multiple-flexible-link robot

in [11]. The method here is similar to this approach, but no inherent damping is required as

in [11].
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The rest of the paper is organized as follows. Some background results that will be used

in the stability analysis are collected in Section 2. The main procedure is outlined in Section

3. Three application examples, flexible joint robots, flexible beam, and fully actuated robot,

are then considered in Sections 4, 5, 6, respectively. Generalization to the trajectory tracking

problem is considered in Section 7. Simulation results involving a single flexible joint robot

are summarized in Section 9.

2 Preliminaries

The time evolution of 'energy' is an important and useful characterization of stability for

physical systems, linear and nonlinear alike. Energy based stability analysis has been widely

applied to the study of systems such as electrical networks, mechanical structures, thermal

:_ systems, etc [12]. The concept of passivity is traditionally defined as an input/output (I/O)

.condition [13] describing a common class of physical systems which do not generate energy.

Relationship between I/O passivity and state space parameters was extensively explored in

the 60's [14] in part by using the Lyapunov's method. In this section, we will summarize

some basic definition and results that will be useful for the rest of the paper.

.... Define the input and output signal spaces, Ur, Yr, respectively, as extended spaces

•: Zz,(P,,+,l:t"_). Let PT denote the operator which truncates a signal at time T. Define

the truncated inner product by

_0 °°(u('),v('))T _- (PTu(.),PTv(.)) 2 = (PTu(t))TpTv(t)dt.

By a dynamical system, we mean an I/O mapping H : Ur --+ Yr. The input-output stability

considered here is the finite-gain I/O stability. A system H is said to be finite-gain I/O

stable if there exists a constant k such that

IIP yll k IIPr ll for all T _ O.

H is passive if

(y, U}T >_ 0 for all T > 0.

The concept of passivity can be generalized to dissipativity [15]. A system H is dissipative

with respect to the triple (Q, S, R) if

(Y, QY}T + 2 (y, SU)T + (u, Ru) T >_ 0

for all T k 0 and u E L/r, where Q, S and R are memoryless bounded operators with Q and

R self-adjoint. Clearly, a finite-gain stable system is dissipative with respect to (-I, 0, k2I),

while a passive system is dissipative with respect to (0, {I, 0).

An important theorem which can be used to determine the I/O stability of the intercon-

nection of passive systems is the Passivity Theorem. In its simplest form, it states that if the

open-loop system is passive and the feedback system is strictly passive, then the closed-loop

system is L2-stable i.e. finite-gain I/O stable.

I/O stability infers internal state space asymptotic stability if the closed-loop system is

stabilizable and zero-state detectable (if these properties hold globally, the internal stability



is also global). A system H is said to be zero-state detectable if u(t) =_ 0 and y(t) ---. 0

imply that the state x(t) ---* O. For linear systems, this corresponds to detectability. Under

the stabilizability and detectability conditions, a dissipative system with Q < 0, i.e. a finite

gain I/O stable system, has an asymptotically stable equilibrium at zero.

3 Main procedure

The class of systems considered in this paper is described by the following dynamical equation

of motion:

M(O)O + D(O) + C(O,O)O + f(O) = Bu (1)

where 8 6 R" is the displacement vector, u 6 R" is the input force vector, M is the

mass-inertia matrix, D is the viscous damping and Coulomb friction, C corresponds to the

centrifugal and coriolis forces, and f contains the gravity force, spring coupling force, etc.

Note that for space applications, the gravity force can be ignored.

Most mechanical systems belong to this class; additional assumptions will be imposed

later as required. Particular systems of interest that can be considered include fully actuated

_robots, flexible joint robots, robots with flexible links, and satellites with flexible appendages.

?+: For the general discussion, we assume zero damping, i.e., D(0) = 0. All the results are of

course valid for the damped ease also.

We will first consider the output set point control problem.

: Assume the measured outputs are BTo and BTo, i.e., the generalized coordinate and velocity

._ that are directly actuated. Suppose the output of interest is

u=co. (2)

Choose a feedback control law u based on the measured output, so that y(t) asymp-

totically converges to the desired output set point Ydes.

Based on the inherent passivity property of this class of systems, the general procedure

described below can be used to construct a solution to the output set point control problem.

Extension to output tracking will be addressed in Section 7.

1. Steady State Analysis. The first step is to find a desired state 0d_, and a feedforward

uff such that

CO_t_, = Ya_, (3)

Bug = f(Od,,). (4)

If these equations are solvable, then the feedforward control can be used to form the

error system:

M(O)O + D(_) + C(O, O)t_ + f(O) - f(Od,,) = Buo

where u = Uo + u ff.
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2. Error system Stabilization. Assume that with a static feedback Uo = 9(BTO),

the map from Uo to Brt_ is passive (this assumption will be justified for a number of

applications). Then any strictly passive map from BTO to Uo can be used to feedback

I/O stabilize the error system. If the closed loop system is further stabilizable and

zero-state detectable with respect to Uo and BT_, respectively, then the zero error

state is asymptotically stable.

We will focus on three examples, flexible joint robots, flexible beams, and fully actuated

robots, to demonstrate the application of the above simple approach.

Remarks:

. If the system is linear, then the passivity of the original system (between u and BTo)

implies the passivity of the error system (between Uo and BTo). For nonlinear systems,

additional assumption on f needs to be placed, for example, the joint stiffness is

sufficiently strong relative to the gravity load for flexible joint robots.

. It is well known that passive linear systems are necessarily minimum phase and, con-

versely, a minimum phase plant can be rendered passive through a static state feedback.

A similar relationship for nonlinear systems has also been recently published [16]. It

is shown that a nonlinear system can be rendered passive by static feedback (i.e., it is

feedback equivalent to a passive system) if and only if the zero-dynamics are weakly-

minimum phase and the relative degree is one. It is known that flexible joint robots

and flexible beams have stable zero-dynamics with respect to the motor velocity and

hub velocity, respectively. We will show that the static position feedback renders these

systems passive.

. The classical proportional-derivative (PD) control law (for the actuated variable) is

a special case of the family of control laws developed here. However, the velocity

feedback can be augmented by any passive system in parallel. Through an example,

we will see that the dynamic nature of the passive system can be exploited to enhance

the closed-loop performance.

. As it will be shown in the application examples in sections to follow, the above analysis

does not require any structural damping in the model. Damping, however, will be useful

in the output tracking problem.

4 Application to Flexible Joint Robots

Consider the general model for an n-link flexible joint robot (2n degrees of freedom) [17].

This model contains the gyroscopic forces that are commonly assumed approximately zero

[18, 19, 20]. Denote the link angle vector by 0t and motor angle vector by 0_. Define

0 = [ OtT Or ] r. The dynamic equation of motion is given by

. t(o)O + c(o,o)o + 9(o)+ = a,,
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where B is of the form [ 0 I ] T due to the assumption that only motor shafts are actuated,

g(8) denotes the gravity load, and k(0) denotes the spring coupling between motor shafts
and the link shafts.

4.1 Feedforward Compensation based on Steady State Analysis

The control objective is to steer 0t to some desired constant 0td,, (i.e., in (2), y = 0t). The

first step is to form an error system:

M(O)O+C(O,O)O+g(8)-g(Od_s)+k(O)-k(Od_s)=Bu-g(Od, s)-k(Od,,). (6)

In order to cancel the additional terms on the right hand side, we need to find a feedforwaxd

torque uff and a desired set of angles Od,s (as in (3)-(4)) that satisfy

u = uo+ u# (7)
Bu# = g(0d,s)+ k(0d.). (S)

Equation (8) can be restated as follows: for a given Otd.,, find 0_,_, and uffsuch that

o = _(g(Od,,)+ k(O_,,))

:_.; .. u# = (BTB)-lBr(g(Od..)+k(Od..))=Br(g(O_o)+k(O_.))

where/_ is the annihilator matrix for B, i.e., /3B = 0 or/_ = [ I

and k(Od,,) axe usually in the form

I
k(Od.,) = [ N kl ( Oed.,, O,_d.. ) 1

-k,(O_.... 0.....) j "[

(9)
(10)

0 ]. The terms g(Od,_)

(Ii)

(12)

This implies that uff and 0,,,_o should satisfy

g,(o,,,,) (la)
uff= N

kl(Ot,.° Om,,,) = gx(O_d") (14)
' N

To solve (14), we assume that for a given 0_,.,, Vo,,,k_(Otd,,, O_) is invertible in some open set

in O,n. Then by the Implicit Function Theorem [21], there e,,dsts a locally unique solution

O,,,,_, to the equation (14). A common form of kl is

(k,)doe,o.,) = I(W_O_- O.,_)

where Ni is the gear ratio of the ith joint and f is monotonically increasing, continuously

differentiable, and the range of f is R. In that case, since f is globally invertible, a unique

solution, 0,_.., to (14) can be found for any Oed..



4.1.1 Passivity

With the desired motor angle and feedforward torque chosen as in (13) and (14), the equation

of motion becomes

M(O)O + C(O,O)O + g(O) - g(Od,,) + k(O) - k(Od,,) = Buo. (15)

If the sum of the gravitational potential energy and spring potential energy, is positive

semidefinite in A0, A0 = 0 -- Ode,, then one can show that the map from Uo to 0 is passive.

This is not true in general since 01d,, can be arbitrarily chosen. Therefore, we introduce an

artificial potential energy by using a proportional feedback; more specifically, choose Uo to

be

uo = ul -- KpB T &O.

0 0 + -NVf(NOed,, -0=_,,)

If the spring at the joint is sufficiently stiff in the sense that

N2Vf(NO,d,, - 8=d,,) > -V0tgl(0td,,)

then condition (19) is satisfied for a sufficiently large Kp.

Now consider the following scalar function

V(&O,O) = I OT M(O)O + U( AO)

(16)

Assume that it is possible to choose Kp so that for some 6 > 0

Vog(Od_,) + Vok(O,t_,) + BKpB T >_ 5I > 0. (17)

Consider g(O) and k(O) as modeled by (11) and (12), respectively, where k, is

k,(8e, O_) = f(NS, - 8_) (18)

f is a monotonically increasing function and N is a diagonal matrix containing the gear

ratios. Then condition (17) becomes

-NVf(NOt,_.-O=_.)] [0 0 ]Vf(NOt_., - O_d. ,) + 0 Kp > 0

(19)

(2o)

where the first term on the right hand side is the kinetic energy and the second term is the

sum of the potential energies:

U( AO) = G( AO + Od,,) - G(Oa,,) - g(Oe,,) T Ao + K( AO + Od,,) - I(. (Od,,)

--k(Odes)T AO + I AOT BKpBT AO (21)

where G and K are the gravitational and spring potential energies, respectively. Under the

assumption that (17) is satisfied, U(&O) is positive definite. The derivative of V along the

solution of the equation of motion, denoted by V, is

•(/= oT Bul (22)

where we have used the fact that C(0,0) can be chosen (only C(0,0)0 is unique, but C(0,_})

is not) so that ½i_I-C(0,0) is skew symmetric (a fact that was used in [2, '22, 23, 24, 25] and

many others). Integrating both sides of (22) and using the fact that V is positive definite.

it follows that the map from ut to BTo = 0_ is passive.



4.1.2 Stabilization

Oncethe passivity from ul to BT_ is established, a large family of feedback control law can

be used to achieve I/O stability:

ut = u2 - C,,(BTo) (23)

where C. is any strictly passive system. Since the closed-loop system is the feedback connec-

tion of a passive system and a strictly passive system, by the Passivity Theorem, the map

from u2 to BTo is L2-stable. Furthermore, if u2 = 0, we can conclude from (22) and the

Invariance Principle that (8,0) converges to the largest invariaat set in {(a,t)) : BTo = 0}.

To see this, recall that the strict passivity of C,, means

f0Twr (w)dt > -.r2+,7 Ilwll=at. (24)

for any w E L2, Substituting BTo into w, and noting that the left hand side of (24) asymp-

_ totically vanishes due to (22), it follows that BT_ E L2. Now by applying the standard

argument that 0 are uniformly bounded, we can conclude BT0 ---, 0 asymptotically. Fur-

:" :thermore, since all higher derivatives of _ are uniformly bounded, all higher derivatives of

BT_ also tend to zero asymptotically. If the closed loop system is zero state detectable from

BT_, then the zero error state is asymptotically stable• If the detectability is global, then so

.... asymptotic stability.... is the

. Under the following assumptions (slight generalization of the conditions in [4] and in-

cluding the approximate model in [18] as a special case), the zero state detectability can be
shown:

1. The mass matrix M is of the special form

M(0)=[ Mll(6t) Mt_(St)]M12T(Ot) M22 "

This assumption is valid when the motor is symmetric about its axis of rotation;

otherwise, all four blocks would depend on both _t and 0,,, [26].

2. The gravity load g and elastic coupling k are given by (11) and (12).

3. k is diagonal (i.e., ki only depends on 8ti and 6_i).

4. Votk(#t, O,_) is positive semi-definite for all Ot and #_, and (Or, 0,,,) for which _Totk(Ot, O_)
loses rank are discrete.

To see how this set of assumptions lead to detectability, substitute t_,,, = 0 into the dynamical

equation (1), then we have

Mtt(Oe)Oe = -C_(O,,_e)Oe- g_(Ot) + gt(Oe_..)- Nkt(Oe, O_) + Nkt(Oea.,,a,,,,,..) (25)

M_2r(0p)gp = kt(0_,0,_) - k,(Ot,o,,Om,.,) - ffpAOm. (26)

C_ m



Differentiate (26) once more, we have

i=1 t,

(27)

It has been independently pointed out in [26] and [4] (the former is for the exact case) that

Ml_ is strictly upper triangular. Applying this fact and assumptions 3 and 4 to (27), it

follows that t_ = 0. Substituting back into (15), we obtain

g(o) - g(o o,) + k(o) - + BK, B r /,o = o. (28)

From the assumption that l(p has been chosen sufficiently large as in (17), (28) implies local

asymptotic stability. If (17) holds uniformly for all Ou,s, then the asymptotic stability is in

fact global.

For the general model, the observability condition can be checked for the linearized

system. First set us(t) = 0 and BTo(t) = BTO(t) = O. From linearized closed-loop equation

of motion, we have

S TM(Od,s)-x(x7og(Oa*,) + Vok(Oa,,) + BKvBT)Ao = B rM(Od*,) -1KAO = O.

Differentiating this equation twice more and use the equation of motion again, we have

BTM(O,t_,)-II'fO = 0

BTM(O_,,)-t[VM(Od,,)-_['[AO = O.

These equations together imply the full state is identically zero if and only if M(Od,,) -- [£

is nonsingular, where/_" _a_V0g(O_,,) + Vok(Oa,,) + BKvB T.

From the above analysis, it is clear that under fairly mild conditions, the zero error state

of the closed-loop system is globally asymptotic stable. But which C,_ should one choose

among the many possibilities in order to enhance a specified performance measure? This

appears to be a hard question in general. We shall again encounter the same question in the

next section. At the present, we do have some intuitive rules of thumb for the selection of C,.

The simplest choice of C,, would be just a constant gain. Then the closed-loop control law is

of the PD type (but only the motor variables are fed back). As demonstrated in simulation

in [27], in contrast to the fully actuated robots, large PD gains degrade the closed-loop

performance in terms of the settling time and amplitude of oscillation. This is due to the

fact that the zeros in the ut to 0,,, system are on the jw-axis, high gains would then drive

some of the poles toward these zeros and the response would become increasingly oscillatory.

It is intuitively plausible to choose C,, to be an SPR (i.e., linear time invariant and strictly

passive) compensator where the gain is concentrated at the open-loop resonant frequencies

(so that a small oscillation in 0,, will cause a large corrective action) and at the disturbance

frequencies (as in notch filters). In simulation [27], much improvement is obtained by using

this approach. This idea is similar to a common practice in servo control where a band

pass or high pass filter is used in the motor velocity loop (usually analog), in addition to

the usual PID loop, to improve performance in the higher frequency range (for example, see

the servo controller for space shuttle remote manipulator system in [28]). For the type of

- 9



systemsconsideredhere,wecanbemorespecificabout the classof filters that canbe tuned
for increasedperformancewithout affecting the stability.

In the feedforward, the only model-dependentinformation that is required is the grav-
ity load and spring coupling. If this information is inexact, then u2 in (23) is a nonzero

constant. Since local internal asymptotic stability implies bounded-input/bounded-output

(BIBO) stability for sufficiently small initial error, the output error 0t - 0td, is also pro-

portionally bounded, and the internal states would remain bounded. In Section 8, we will

adaptively update this constant; not surprisingly, the resulting control law is of the standard

proportional-integral-derivative (PID) structure.

In the case that the full state is available, an interesting question arises: How can 8_ and

0t be included in this passive control framework? A reasonable approach would be to find

another output which is independent from _,_ and passive with respect to u2 (i.e., after the

A0,,, and _ loops have been closed as described above). Then an additional strictly passive

feedback can be applied to enhance transient performance. Finding an additional passive

output for a linear system of the form :_ = Ax + Bu is straightforward: solve the Lyapunov

Equation ATp + PA q- Q foz: some Q > o, then choose the output map to be C = BTp. A

general procedure for nonlinear systems such as the flexible joint robots is unknown at the

present.

4.1.3 A Simplified Dynamical Model

The exact model for flexibly jointed robots is not exact linearizable [29]. In [18], a simplified

model for flexibly jointed robots was proposed. This model ignores the gyroscopic forces due

the motion of rotating motors in the inertial space. Based on this model, an exact linearizing

control law was obtained. The simplified and full models have been compared in [17] based

on the parameters of a PUMA 560 robot and it is concluded that the approximate model is

a very good one for earth bound applications (when the arm is mounted on a mobile base,

the effect is far more drastic). The space shuttle remote manipulator system is also modeled

under this assumption [28]. In this subsection, we consider the stability analysis and control

design discussed above as applied to this simplified model.

The simplified model is of the form

Ml(_)_e+ Cl(6t,_e)_÷ gl(Oe) + Ykl(NSt-8,_) = 0 (29)

z,,,L,,- k,( vo - 8,,,) = u. (30)

Given the desired link angle vector Otd,,,, the steps in section 4.1 can be followed to obtain

the feedforward control uff and desired motor angle vector 0,_,, for the error system:

g,(0t o.)
uff - N

0,,,.. = g0 ,.
N

(31)

(32)

where kl is assumed to be globally invertible. The spring model for kl is usually assumed

to be diagonal (i.e., the ith component of k1(x) only depends on xi) and each component

is monotonically increasing. Hence, the invertibility assumption on kl is a very reasonable

one.

i0



The error system is described by

+Nk,(Ne, - e.) - Nk,(NO,,.. - e.,,..) = 0 (33)
I,,gm - kl(NO, - O,_) + ka(NO,,.. - O,_,..) = Uo (34)

where u = Uo +uffhas been used. As in section 4.1.1, in order to show passivity, we introduce

a proportional feedback to create a positive definite potential energy at the desired set point:

Uo = Ul - KpAe.,.

Now, assume

[ -NV, ki(Ne,, -e..,..) ] >0. (35)-NVekl(NOt,.. - O=,..) Kp + Vek_(NOt,.. - 0=,..)

This condition is satisfied if the spring is sufficiently stiff compared to the gravity load

(typically a reasonable assumption especially for geared robots) and K, is sufficiently large

in the following sense:

N2Vek,(NO,,., - 0,,d..) > --Vegl(etd..) (36)

g211Vokt(NO"'-O'"')ll2 (Vak_(ga,_.. e,_,..))(37)
_._.(IG) > a_. (N2Vek,(Net,.. - e=,..) + veal(e,,..)) -_" - "

With the storage function

= + + u(Ae,.Ae..) (as)V
£

where

u(Ae,.Ae..) = G,(Ae,+e,,..)_al(e,,..)_g_(e,,°.)rAe,

+/Q(NAee - AO., + Nee,.. - e,,,..) - K_(Need.. - e,,,..)

--kt(Netd..-e._d..)T(NAet--Ae,,_)+lAe._TKpAe._. (39)

The scalar functions K1 and G1 are the spring potential energy and gravity potential energy,

respectively. Again use the skew symmetric property of ½i_l - C1; it follows that the

derivative of V along the solution trajectory of (29)-(30) is

which implies that the map from ul to/J= is passive.

The final step is to choose a motor velocity feedback for stabilization. Again by the

Passivity Theorem, ul can be chosen as

where C_ is strictly passive, the closed-loop system is L= I/O stable from u: to _J,_.

Since the simplified model in this section satisfies all the assumptions stated in the last

section, global asymptotic stability of the zero error equilibrium follows from the I/O stabil-

ity.
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5 Application to a Single Flexible Link

Consider the linearized model for a single link flexible link [30, 31] discretized in terms of

the natural modes:

A- _2q = bu (40)

where q is the modal amplitude, u is the hub torque, and

_, [0,x, 0,x. ] br = 1 [¢;(0) ¢_(0) ... _,-(o)]

where p is the link density (over unit length), wi's are the natural modal frequencies and

¢i's are the corresponding mode shapes. Spatial derivatives are denoted by '. Here we

consider only an (n + 1)-mode approximation to avoid the technicality associated with

infinite dimensional systems. For a discussion in the infinite dimensional context, see [31].

Note also that the nonlinear model in [31] is of the same form as (6) in the flexible joint robot

case. The same analysis as in the previous section can be applied. Here we will concentrate

on the linearized model.

Let x = [q, q]T. The state space equation is

[0 ,] [0] ,41,z= _f_2 0 z+ b u.

Assume that the hub angle and angular velocity can be measured. The corresponding output

equations are

yp = [br olx (42)
y. = [0 bT]x (43)

where yp and y. are proportional to the hub angular position and velocity, respectively.

5.1 Feedforward Compensation based on Steady State Analysis

Suppose the output of interest is the scalar variable

y=Cq.

Consider the set point control problem of steering an arbitrary initial state (q(0), q(0)) to

a steady state which corresponds to a specified desired output yd,. As in (3)-(4), we are

interested in finding a full state set point q_,, which maps to the desired output Yd,,, and a

feedforward u_that cancels the extra terms in the error dynamical equation for Aq = q--qd_,.

This means qa, and uff must satisfy the following equations:

fl2qd,, -- buff = 0 (44)

Cqd_ = yd_s. (4.5)

12



Assume the leading components in b and C, bo and Co, respectively, are nonzero. Then the

model matching equations (44)-(45) imply

uff = 0 (46)

Yd*_
qd-0 = -- (47)

Co

qd,,i = 0 for i _ I. (48)

The error equation is then governed by

;i + _'12Aq -- bu (49)

Ayp = bT Aq (50)

where Aq = q - qdes.

5.2 Passivity

In the error dynamical equation, f_2 is only positive semidefinite. For internal stability, cf.

section 5.3 below, it is important that the stiffness matrix is positive definite. To achieve

this, a proportional feedback loop is first closed:

u = ux - (51)

The effective closed-loop stiffness matrix is then

_2 = fl2 + kpbb T.

Since it is assumed that b0 #- 0, _2 is positive definite for any kp > 0.

To show the mapping ut to bT_ is passive, consider the storage function

V(x) = _1[_1[ 2 + qT_12q.

It is easily verified that the derivative of V along the solution is t_ = (bTq)Tul. The passivity

from ut to bTq follows from the fact that V is a positive function.

5.3 Stabilization

For the open-loop error system (49), the controllability matrix, after reordering the columns,
is

with

c0=[b -n b ...

Assume the modal frequencies are all distinct and every component of b is nonzero, then Co

is invertible which means that the system is controllable.

- 13



The observability matrix with respect to y_ for the open-loop error system is

0 -122Co ]O= Co 0 "

Since 122 is singular, O is singular which means that the system is not observable from

y,,. However, with the proportional feedback of the motor position as in (51), I22 in the
observability matrix is replaced

_2 = 12_ + kpbb T

Since _2 is nonsingular, the observability matrix is also nonsingular and the system is ob-
servable.

By the Passivity Theorem, the hub velocity loop can be closed with any strictly passive

feedback C,,, i.e.,

ul = u2 - C,,(bT it),

and the resulting closed-loop system is L2-stable from u2 to bTq. For the internal asymptotic

stability , we need stabilizability and detectability. From the analysis above, it is evident

that if the poles of C_ do not cancel with the zeros of the system with proportional feedback,

then the overall closed-loop system is controllable and observable, and, therefore, internally

asymptotically stable.

It is tempting to choose C,_ to be an SPR filter which, over certain bandwidth, approxi-

mates the plant inverse (this is possible since the plant is passive, therefore, minimum phase).

Then the I/O map from u2 to bT(1 is approximately constant in that frequency range. This

would result in an excellent I/O response; however, the internal state becomes almost un-

observable which means a very poor internal state response. This has indeed been observed

experimentally, where excellent step response is obtained at the hub but the beam oscillates

at a frequency corresponding to the pair of zeros with the lowest frequency.

6 Application to Fully Actuated Robots

The passivity property of fully actuated robots has been much exploited in recent years,

starting from the path breaking work in [2] to many later extensions in, for example, [22, 23,

24, 32] and many others. This section briefly reviews some of these results and shows how

they fit into the framework outlined in Section 3.

The equation of motion for a fully actuated arm is the same as that for the flexible joint

robot (5) except for B = I and k = 0:

M(O)# + C(O,O)O + g(O) = u. (52)

Consider the set point control problem, i.e., the control objective is to steer an arbitrary

initial condition (0(0), 0(0)) to a specified set point (Odes, 0).

The first step is to choose a feedforward control to form the error system

u = Uo + uB"
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where uff may either be the gravity load cancellation or the gravity load at the desired set
point:

uz = or (53)

= g(o). (54)

In both cases, a position feedback loop needs to be closed to ensure a positive definite
stiffness:

Uo = ul - KpAO

where It'p is positive definite. In the first case, Kp should be chosen large enough so that

the combination with the gravity potential energy is positive definite. To show the passivity

from ul to t_, the following storage function can be used:

= IOTM(O)O -t- U(AO) (55)V(O,O)
£

where U is the total potential energy (including the position feedback loop)

= 1AOTKpAO + C(AO + Od,,) -- G(Od,,) -- g(Oe,,) TAO

= 1AOTKpAO. for (54)

for (53)

Now, any strictly passive feedback from t_ to ul can be used:

ul =U2--Cv(O).

By the Passivity Theorem, the closed-loop is L_-stable from u2 to t_. Since the stiffness

term is globally positive definite, t_ is globally zero state detectable. With only the position

feedback loop, the system is globally controllable (since u can always be chosen as an exact

linearizing controller). If the velocity loop is exponentially stable, then the stabilizability is

preserved, hence the zero equilibrium of the error system is globally asymptotically stable.

7' Tracking Control Problem

So far we have considered only the set point control problem. Another important aspect of

the control design is the output trajectory tracking problem. An intuitive approach is to

simply replace t} by A0 in the set point controller with the hope that a well tuned set point

controller would also imply good tracking. In this section, we will both justify and modify

this intuitive approach.

Given the general dynamical equation (1), consider the problem of finding a feedback

control u so that the output y = CO tracks an arbitrary trajectory Ydes asymptotically. A

natural extension of the set point control approach presented before is to express the system

dynamics in the error coordinate and choose a feedforward control uff to cancel the extra

terms in the dynamics, assuming that this is possible:

M(O)_[9 + C(O,O)_O + f(O) - f(O_,) -- BUo (56)



whereu = Uo + uff has been used and

Buff= M(O)_d,, + C(#,_)_d,, + f(Od,,) (57)

is assumed to have a solution, given yd_,(t) = caa,,(t), t > 0 (this issue is discussed in greater

detail in Section 7.0.4). Note that in contrast to the set point control case, not only is the

model information required in the feedforward but, in general, the full state measurements

as well.

An important extension of (57) is to add to 0d_, with an error feedback, e(A0,/',_) (assume

the equation is solvable). Then the feedforward to be solved is

Buff= M(O)(_d,, - g(AO, Ad)) + C(O,_)_a,, + f(Oa,,). (58)

The solvability of this equation in the flexible joint robot case is discussed in section 7.0.4.

The error equation with this feedforward becomes

M(O)AO + M(O).e(AO, A_) + C(O,O)AO + :(0) -- :(Od,_) = Buo. (59)

The additional term _ can now be chosen to augment performance (this is especially effective

if M strongly couples different degrees of freedom).

Next close a position loop:

uo = ul --KpBT AO

where it is assumed that I(p can be chosen sufficiently large so that BKr, B T + Vof(Oa,,) > 0

(same as the set point case). The problem !s that f(Oa_o) is now time varying and, conse-

quently, the passivity property from ul to A0 cannot be easily shown as before (an exception

is when f is linear, a fact we shall use in section 7.0.2). There are three approaches to this

issue:

. The only time varying term in the error system is due to 0d,_. For each fixed time, the

same passivity analysis as before can be applied to show local asymptotic stability. By

applying a well known theorem for time varying systems [33], closed loop asymptotic

stability is preserved if gd,, is sufficiently slow time varying.

2. If the feedforward torque, uff, is chosen to compensate for g(O) rather than for g(0_,,),

provided that it is solvable, then the passivity analysis cart again be applied.

. Define a new output z = BT_ + #BTO where # is a small positive parameter. If B = I

(full actuation case) or there is inherent structural damping D such that D + BK_B r is

positive definite for some I(. > 0, then the map from ul to z is passive for/_ sufficiently

small, and the same passivity analysis can be applied.

In the remainder of this section, we will elaborate on each of these approaches, and also

discuss in detail the solution of the feedforward torque.



7.0.1 Tracking for Slowly Varying Trajectories

To apply the stability result for slowly time varying systems, the feedforward in (57) needs

to be slightly modified to

Buff= M(#)O,_,, + C(O,O)O#_, + C(0, t_,)A0 + f(0#,,). (6o)

Then the error equation becomes

M(O)AO + C(O, AO)AO + f(O) -- f(Oa_,) = Buo. (61)

In (61), the only time varying quantities are Ode, and Od,,. If they are "frozen" at a particular

constant value (Od,,,Od_,) = (Od_,(T),Od,,(T)) where T _> 0 is a constant, then the derivative

of the following scalar function

= 2A TM(Ae+edo.)aO+U( ½AO 'BK,BTa6

is _" = AOTBul, where U is the potential energy corresponding to f and BKpBT+ _Tof(Ode,)

is assumed to be positive definite uniformly in 0d**. Hence, the stabilizing control law design

based on the passivity approach as described in the previous sections (with 0 replaced by

A0) stabilizes all frozen systems. Under the additional assumption that the frozen systems

are locally uniformly (with respect to T) exponentially stable, a Theorem on slowly time

varying systems as stated in [33, Theorem 5.6.61 can be applied to show local exponential

stability of the closed loop system provided suptmax {t}d,,(t),0de,(t)} is sufficiently small.

Simulations in [27] confirm this result, where a slowly time varying sinusoid can be closely

tracked, but not a fast time varying sinusoid.

7.0.2 Tracking by Direct Compensation

Another possibility is to directly compensate for part of f(0) in (56). The feedforward torque
that needs to be solved is now

Buff= M(O)O,_,, + C(O, O)t_d,, + f_(O) + FOd,, (62)

where we have decomposed f(O) according to f(O) = f_(O) + FO where F is a square matrix.

The reason that we decompose f in this fashion is related to the solvability of (62) (see

section 7.0.4 for detail).

Assume that a solution exists, then the error equation is of the form

M(a)At_ + C(0, t})A0 + FAO = Bu,,. (63)

Now the same passivity analysis as before can be applied for the control law

Uo= -ZqBr - (64)

for any strictly passive C_.
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7.0.3 Tracking by Output Modification

Even in the local version of (56), with f(O) - f(O_,,) replaced by Vef(O_,)AO, V0f(0a_,) +

BKpB T > 0 for some Kp, the map from Uo to BTAO is still not passive in general. This can

be seen by evaluating the L2 innerproduct between this input/output pair:

T( Br AO)Tuo dt fo AOT(M(O)/xoT= + c(o, o)t,o + vof(o ,,)Ao) dt

--_ (Vef(Oe_o))AOdt. (65)

Since _(X_ef(Odes)) may be sign indefinite, the integral cannot be bounded below by a

constant. To counter the effect of this last term, we consider adding a proportional feedback,

BTAO. The contribution to the input/output innerproduct due to this addition is

oT(B T Ao)Tuo dt

?¢" . .

= foTAOT(M(O)AO + C(Ü,0)A0 + Vof(ed,,)AO)dt

= AOTM(O)AOI: -- foT(AorM(O)AO + AOr(ifl(O,O)-C(O,O))AO)dt

+ fo r AOTVof(Od,,)AO dt. (66)

; ' For the local analysis, we shall ignore the higher order term (3;/'(8, 0) - C(#, 0)).

• consider adding a static PD loop:

Now,

Uo = -KpS r A8 - K,,B r AO + ul. (67)

Then the innerproduct between ul and BTAo is the same as (65) except Vef(0a,,) is replaced

by Vof(0d,,) + BKr, B r and there is an additional term:

fo r AOT BK_BT AO dr.

The innerproduct between ul and BTAO are the same as (66) except Vef(Od,,) is replaced

by Vof(Ode,) + BKpB T and there is an additional term:

1AOTBI(,BT AOI r.
2 _o

Now form the augmented output

z = BrAt_ + cBrAO.

For c sufficiently small and Od,, sufficiently slowly time varying, all terms in for zr(t)ux(t)dt

can be bounded below by a constant except for the integral involving the quadratic term in
AO which is

fo T 2xor(-cM(O) BK_Br)AOdt.+ (6S)
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Terms involving the error statesat time T can be lumped together in a quadratic form:

[AO(T) T BKpB T) AS(T)nO(T) ] [ _(vof+ _M ad(r) •

Since M and _ef + BKpB T are both positive definite, for c sufficiently small, this term is

positive.

Only the indefinite term in (68) prevents the map from ul to z from being passive. There

are two situations in which this term is also bounded below by a constant:

1. The arm is fully actuated, i.e., B = I. This approach is the same as in [34].

2. There is an inherent damping, D_, which gives rise to the term Dz_ in the error equa-

tion (the feedforward uff needs to be modified accordingly). If D + BK_B T is positive

definite, then for c sufficiently small, the integral is bounded below by a constant.

If either of the above situation holds, then the map from ul to z is passive and the same

analysis can be carried as before to generate stabilizing control laws based on passive map

from z to ul. In the example in [27], it has been shown that link damping in a flexibly jointed

robot allows tracking of a fast trajectory that could not be tracked when the damping is
absent.

7.0.4 Derivation of the Feedforward Compensation

Flexible Joint Robot Case

To form the tracking error dynamic equation, we need to solve for uff in either (57) or (62).
In this section, we will consider this problem for the special cases of a flexible jointed robot

and a single flexible link.

We will consider only the simplified flexible joint model given in (29)-(30); the general

case is considerably more complicated. Suppose g = St. Then (57) involves solving for

(u_(t),_,,,d,o(t),8,,_,o(t)), given 8td,,(t) and its higher time derivatives (as many as required)

and (O,,(t),9,,(t),t_l(t),_l(t)), from the following set of equations:

M1(_t)_d..+C1(O_,e_)_td..+g1(8_.°)+Nk1(Ng_d.-_,_.,) = 0 (69)

I_,,,d.. - k,(Nt_do, - &,,d..) = uff. (70)

Assuming hi is strictly monotonically increasing so an inverse function h -1 exists. Assume

kl is twice differentiable. Then 0,,,_., can be solved from (69):

o,,,,..= .,vo,,.,+k,-' (N[M,(O,)_,,.,+c,(e,,_,)_,.,.,+g,(e,.,..)]). (71)

To solve uff_om (70), 8_d,, must first be computed. This can be done by differentiating

(71) twice:

d2 [k. -_ (__'_" = _"%_':+7 . [M,(¢),_,_.,+ c,(_:._),)_),.,..+ j,/%..)])]. (72)
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Note that the second term involves 0t and 0"t, which can in turn be resolved using the

dynamic equation (29) and its derivative. Finally, uff can be computed from (70).

For the direct compensation case, cf. (62), the feedforward compensation equation based

on the simplified flexible joint model is

+Nk2(NO,-6.,)+ NK(NgI,.--6=d.)=0

z.,&,,.. - k_(Ne, - Or.)- K(Ne, d.. - e.,,..) = ug

(73)

(74)

where K is any square invertible matrix and ks is chosen from k2(x) = kl(X)-Kx. Following

similar steps as before, (73) can be used to solve for 8,,,_, :

K-1

ema.. = --_-(Ml(Ot)O,d.. + c,(et, Ot)Oe,.. + gl(et) + Nk=(Ne,-e,,)) + NO,_ . (75)

To solve for ufffrom (74), again _J_,,, needs to be computed by directly twice differentiating

both sides of (75). However, 0m,,, now not only contains 0t and 0"t which can be resolved

using the dynamical equation and its derivative as before, but also e,_ (through the derivative

of k2) which in turn depends on u_ Therefore, to solve uff, we need the invertibility of

('I+ K-ZV=k2(Z)lNe,_o,) for all Ot and 0n, which does not appear to be a severe limitation.

Note that if the spring is assumed to be linear as common practiced in the literature, this

additional assumption would not be needed.

For flexible joint robots, Eq. (58) can be solved in exactly the same fashion as above. A

•simple but useful choice of the function g is simply

e(Ao. Ao)= &,Ao, + g.,_X0, (76)

The closed loop equation is now of the following form

MI(Ot)AOe+ Cl(Ot,Ot)AO,+ g,(Oe)- gx(O,,..)
+Nk,(NOt-0_) - Nkl(NOt,.. -O.,d..) + Mx(Ot)(K,,,AO,+ K_,,AOe)= 0 (77)

_ - - " O (78)I=AO= k_(NOt On)+ k_(NO,,.. 0.,,,..) + I.ip. A .,, = Ul

The system linearized about (A0, aX0) = (0,0) is passive between ul and A0= since the

stiffness matrix

[ VgI(Oed.°)+N2Vk,(NO,,..-O,,,,..)+MI(Otd.,)Kp, -NVkt(NOed.,-O,,,d..) ]-NVk_(NOtd,, - On,,,) Vk_(NOed,, - Om_,,) + Kp,,,

is positive definite. Hence, any strictly passive loop between £xtJ,_ and ul can be closed to

ensure closed loop asymptotic stabifity of the error system.

The purpose of the feedforward control can be thought of as winding up the spring torque

so that the link dynamics is governed by
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The role of the feedback control is to produce the motor trajectory that is required for this

feedforward.

Flexible Link Case

For the flexible link case, the situation is quite different since the acceleration of the

actuated degrees of freedom are not decoupled from the acceleration of the unactuated

degrees of freedom as in the simplified model of a flexibly jointed robot. We now need to

solve for (uff, qdes) given a desired output trajectory Yaes:

qdes + f22qdes -- Buff (79)

Cede, = Yd,, (80)

with the additional constraint that uff needs to be uniformly bounded for implementability.

This problem is almost identical to the inverse plant problem considered by [35], but here we

solve for the desired plant trajectory rather than the actual plant trajectory. Consequently,

while the control law obtained in [35] is entirely open-loop, here we have a feedback control

structure.

To analyze the solution of (79)-(80), first express qd,, in the following form:

qd,, = C+Ya,, + C_ (8l)

where C + = cT(ccT) -I is the pseudo-inverse of C and C is the n × (n - m) full rank matrix

that is annihilated by C (CC = 0). Note that (_ can be formed by the linearly independent

columns of (I-C+C), but C # (I-C+C) since C is full rank.

Differentiating the equation twice, we have

qde,= c +//d.,+

Substitute back into (79) and assume B is full rank, we can solve for uff

(82)

To eliminate uff from (79), we multiply/_ (the annihilator of B) from the left; and using

(si), we have
+ = + (83)

If CB is invertible, then /?C is also invertible and the dynamics of _ is governed by

+ At = Lp (84)

where p = [ ye_ ijdes ]r. We shall assume that det(s2I + A) does not contain any purely

imaginary roots.

If CB is singular, then part of _ can be determined algebraically, and the rest is governed

by a dynamic equation of the same form as (84). For the ease of presentation, but without

loss of generality, we shall assume CB is invertible.

For implementability, the initial condition, (_(0),_(0)), needs to be chosen so that ,_(t)

that solves (84) is uniformly bounded for all t. There are two equivalent approaches to find

"21



the initial condition. A Laplacetransform approachwasstated in [35] and a time domain
approach in [9]. We will discussboth approacheshere.

In the first approach,the Laplacetransform of (84) is taken:

_(s) = (s2/+ A)-I(LZ(_) + s_(0) + _(0)).

Suppose _(s) is analytic in the open right half plane and has only simple poles on the

imaginary axis (i.e., fla**(t) is uniformly bounded), then the terms in _(s) that can lead to

unbounded time response are only those associated with the unstable roots of det(s2I + A).

Since A is n - rn x n - m, there can be at most n - m unstable roots. Correspondingly,

there are n -rn residue vectors (in R m) which, when the contributions in uff are all set

to zero, lead to m(n - m) equations. There are 2(n - m) constants that we can choose in

(_(0),_(0)). Hence, if m = 2, an initial condition can be chosen in general to nullify the

residues associated with the unstable poles. If m = 1, all residues can be nullified, implying

the time response of _(t) is zero after some finite t. The requirement that m < 2 appears to

be unnecessarily strong as will be evident from the time domain analysis below.

An equivalent time domain approach can also be taken. First write (84) in the first order
form:

[i]
:: ,,After transforming the coordinate according to the stable and unstable eigenspaces (recall

::. that the center subspace is assumed to be trivial), the system is partitioned as

[A+0_,_ = 0 -A_ 7- L_ p

where A+ and A_ are both strictly unstable. The unstable response is given by

_,+(t) j_o t
= eA+tT+(O ) + eA+(t-_}L+p(r) dr

= eA+t("/+(0) 4- ['e-A+¢L+p(r)dr)
Jo

(85)

Choose

0 °
7+(0) = - e -A+ _'L+p(r) dr (86)

assuming the integral exists (which is true if/)d_, is uniformly bounded). Then

_+(t)
ft °°

= - eA+(t-*)L+p(r)dv

= - e-A*'L+p(t + s) ds.

The uniform boundedness of 7+ follows from the strict stability of -A+:

(87)

l[-/+(t)fl _<f0°°
M

Me -'+_ IlL+IFllptlc_ d.s - --FIL+II IlPtIL_
0"+
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where -a+ = maxi ReAi(-A+), Ai denotes the ith eigenvalue, and M is some positive

constant. In [35], it was pointed out that the procedure of choosing the initial condition to

guarantee the boundedness of uff is highly sensitive numerically since any slight numerical

error could lead to divergence. Eq. (87) shows that 7+(t) can be stably computed even

though A+ is strictly unstable. Note that the condition on the number of input/output

pairs is no longer required in this analysis. This discrepancy appears to be due to some

relationship in the residues that we are not taking advantage of.

As in the Laplace transform approach, 7_(0) can be chosen to achieve the zero steady

state for 7- if f_ eA-_L_p(r) dr < oc.

To illustrate the procedure described above, consider a simple example presented in [35]:

[ ]I --I _l

y=Io 1 lq.

u

Follow the procedure outline before, qd,, can be represented as

[0] [1]qdes -- 1 Ydes + 0 _"

After substitution into the dynamic equation, uff can be solved:

5 -_d_ - 3y.o, + + 3f).

Substitute back into the dynamic equation for _, we obtain:

(88)

Suppose the desired output trajectory is given by

1 0<t<l
9a,,= - l<t<2

0 t>2.

(89)

and yd, s(O) = _)de,(0) = 0. For simplicity, make a change of variable r/= _ - Yd,s, then

/_- 7/ = -3/)d,s

3

u# = g(2/) +3r/+ 3_de_)

(90)

(91)

The Laplace transform of _,, is

_, (_) =
(1 - e-') 2

Therefore,

_(._)(,) =
(-3s-'(l - e-') _-+ sei0) +/1(0))

,s-_- 1
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If only the unstable residueis to becanceledassuggestedin [35], one choicefor the initial
condition is

3 e_l)2 (92)_(0)= _(0)= 3(1 - .
In this case, since m = 1, residues associated with both poles can in fact be canceled by

choosing

[ ,7(o1,)(0) ] = [ _((z- _-')_ + (1 - _)_) ]
--}(--(1 -- e-X) 2 + (1 -- e) 2) j" (93)

An equivalent time domain approach can also be taken. The solution of (88) is

cosht sinht 77(0) -3
r/(t) = sinht cosht //(0) -sinhr coshr 1

After using (89), the integral, for t _> 2, is a constant:

Jo'[-sinhr coshr 1 Od,,(r)

Since the stable eigenspace is spanned by [_ 11]

[11]

[1_2cos 1+cosh2]2 sinh 1 - sinh 2 "

and the unstable eigenspace is spanned by

, choosing the initial condition according to (92) leads to

3 t

_(t) = -_,- (i+ _2- 2,)

for t _> 2 and choosing the initial condition according to (93) leads to r/(t) = 0 for t > 2.

Clearly, the latter choice has the advantage that the feedforward control (cf. (91)) is no

longer needed after the desired output trajectory has come to a rest.

When the desired output is assumed generated from a reference model and the model and

plant parameters satisfy a model matching condition, a solution of (79)-(80) can be more

easily solved. This is called the regulator approach, a version of which, called the command

generator tracker theory, was proposed in [7]. The nonlinear version can be found in [36].

Application to the flexible arm control can be found in [37]. We present this approach for a

general linear time invariant system. Consider

x,d_s = Aza,s + Buff

Yale* = Cxd,s.

The desired output Yd,s is generated from a linear time invariant reference model:

where w E R k. We seek a solution of the form

uff= Fw (94)
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where F and a matrix P together should satisfy

PS- AP = BF

CP = Q

which are called the model matching conditions.

chosen as

(95)

(96)

The initial condition zd,,(0) should be

zd_,(O)- Pw(O). (97)

Clearly, if the exosystem is stable, the feedforward signal will be uniformly bounded.

The model matching condition (95) can be written as a linear matrix equation by using

Kronecker products [38]:

where the subscript c denotes the vector formed by stacking up the columns in the matrix.

For a given plant and exosystem, the solvability of (98) can be readily checked (a sufficient

condition is the invertibility of the matrix containing A, B, C, and S), and if solvable, P

and F can also be easily found.

The feedforward uffgiven by the linear regulator approach is a particular solution of (82)
from the plant inversion. It would be interesting to query if the initial condition chosen as in

(97) is related to the initial condition chosen based on the plant inversion approach described

earlier (either through the Laplace transformation or time domain solution). In Appendix

A, it was shown for a single flexible link tracking a sinusoid, that the initial condition from

the regulator approach is the same as the one chosen to cancel all of the residues. We are

currently seeking the generalization of this result.

8 Adaptive Control

The feedforward control in either set point or tracking case requires a great deal of model

information. It is highly desirable to adaptively update this signal without requiring explicit

knowledge of the plant parameters. To this end, consider the closed loop system as an

internally asymptotically stable system driven by the input uff. Based on our passivity
approach, the closed loop system is passive but in general not strictly passive. Our basic

idea is to choose a new output such that the I/O pair between the input uffand this output

is strictly passive. Then any passive adaptation for uff can be used to preserve the state
asymptotic stability.

We will only consider the linearized closed loop plant here, the full nonlinear version is

under development. Suppose that the tinearized closed loop plant is of the form

= Ax + B(u - uff)

where A is exponentially stable, uffis the unknown desired feedforward, and u is the adaptive

feedforward. By the Lyapunov's theorem [39], for any Q > 0. there exists P > 0 such that

ArP + PA = -Q.
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Now define C = BTp as the new output map. Then the triplet (A, B, C) is strictly positive

real [40]. The adaptation for uff is now straightforward. Using the standard linear-in-

parameter formulation [41], suppose uff can be parameterized as

uff= HA

where H in the known regressor matrix and A is the unknown parameter vector. For the set

point control case, H = I and A is a constant vector. For the regulator approach, H contains

w (state of the exosystem) and A consists of columns of F (cf. (94)). For the tracking of

a general desired output, H depends on a, o, ya,, and its higher derivatives. In this case,

finding the structure of H itself may be difficult. A viable approach may be to approximate

H by some expansion and slowly adapt the approximation. The neural net approach in [42]

is a possibility that we shall explore.

To derive the adaptation rule, consider the Lyapunov function candidate

V = xTpx q- A_TF-1A_ (99)

where AA = i - A, i is the estimate of the unknown vector A. Since the output is chosen so

the system is strictly positive real, the derivative along the solution becomes

Choose the adaptive feedforward based on the estimated parameter:

u = 8ff= Hi. (100)

Then

f/ = -xTQz + 2AAT(HTy + F-I_).

Hence, with the following gradient update rule for A:

.

A = -FHTy (I01)

is negative semidefinite. This implies that all states and parameter estimate error are

bounded, and furthermore, by Barbalat's Lemma [43], z converges to zero asymptotically.

For the set point control case, the adaptive parameter update simply reduces to the integral

control law.

We are currently extending this argument to the nonlinear systems by using the nonlinear

Lyapunov equation.

9 Simulation Results

To illustrate the results shown in this paper, we consider a simple one flexible joint robot.

This model is taken from [44]. The dynamical equation is given by

mgg
_me2#,+ B,O,+TsinO,+k(O, 10.,) = 0

n

k

n r_

2G
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Figure 1: Comparison between Link Angle Step Responses

Numerical values used axe (all quantities are in SI units):

rn=10, g=9.8, g=.5, k= 100, n=50, J,,_ =.08. (104)

The damping factors are assumed to be zero except for one of the tracking case.

Fig. 1 and 2 show the step response (90 ° commanded link angle step) of the link angle

and angular velocity under high gain PD (k_ = k. = 5), low gain PD (kp = k_ = .05), and

SPR filter feedback. From these plots, it is evident that under high gain PD control the

response of the closed-loop system, though stable, is highly oscillatory. Lower gain improves

the overshoot and reduces the oscillation, but the best case corresponds to a fourth order

positive real (PR) bandpass filter in parallel to the low gain PD, where the passband is

roughly at the natural frequency of the spring. For this case, the transient is further slowed,

but the residue oscillation is reduced by about 50%.
b(s) whereThe PR filter transfer function is given by

a(s) = s 4 + 7583 + 1925s 2 + 19125s + 56250 roots at {--30, -25,--1,5,-,5}

b(s) = i00(_ 3+31J+230s+200) roots at {-20,--10,-1}

The phase and magnitude plots of this filter are shown in Fig. 3. It should be emphasized

that virtually no tuning of this filter was carried out to optimize the performance. It was

chosen basically to have a peak roughly at the resonant frequency of the hnearized system.

Fig. 4 shows the tracking of a cycloid over the same range. Since the desired trajectory

eventually reaches a steady state, the set point control analysis can be applied. Fig. 5 shows

the tracking of a slowly varying sinusoidal signal. By the analysis in section 7.0.2, it is not

surprising that the actual and desired outputs, 0t and 0e_,, are virtually undistinguishable.

When the desired sinusoid becomes too fast as in Fig. 6 (same as the one used in [44]).

a significant error develops. This is as expected as the system remains [/O stable but no
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longer internally asymptotically stable. It should be noted that even in this case, the PR

filter feedback has much less (by about 50%) error than the constant gain PD feedback.

When the link damping is included, Bl = 36 as in [44] (but not motor damping), so the

analysis in section 7.0.3 can be applied, faithful tracking is once again attained; the results

are shown in Fig. 7.

In all these cases, the same SPR filter as in the set point control case is used, except

the feedback signal is now 0,_ - 0_,, instead of 0m. These examples demonstrate, in a very

preliminary sense, the possibility of tuning the SPR filter to attain an improved performance

in terms of step response and the efficacy of using the feedforward for trajectory tracking.

10 Conclusions

In this paper, we derived a large class of asymptotically stabilizing control laws for a general

class of mechanical systems typified by structures containing uncontrolled degrees of freedom

which are elastically coupled to the controlled degrees of freedom. The idea is to first choose

a feedforward to form an error system. Next a position loop is closed to obtain passivity,

stabilizability and detectability for a particular input/output pair. Then any strictly passive

output feedback can be used to achieve closed loop stability. Through a simple example, it

is shown that the dynamic nature of the feedback can be exploited to enhance performance.

A systematic procedure for designing the feedback system for performance enhancement and

adaptive update of the feedforward are currently under investigation.
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Appendix A

Consider the linear model for a flexible link, where, for simplicity, only one flexible mode
is included:

O+ fl_q = Bu (lO5)

cq = y (t06)

with

_,2 , B= , q(t)=,_,',(o _(t) j •

:}4



Variable O(t) denotes the rigid body displacement, 6(t) denotes the flexible modal displace-

meat, _bl(x) is the eigenfunction associated with the flexible mode and ' indicates the spatial
derivative.

For the output trajectory tracking problem, the desired output trajectory ya_,(t) is given

and the objective of the steady-state analysis is to find a desired state qd,,(t) and feedforward

uff(,t) such that

qg, + i22qd_, = Buff (107)

Cqa_ = Yale,. (108)

Consider the tip angular position as the output variable:

¢.,,(e)
g q= Cq. (109)

For this case study, the desired output trajectory is chosen to be a sinusoid yd_s(t) = sin(_t).

For later use, we also define the following two matrices

C+ = 1 [1] O=[-_le] where Ce=_bl(g)1 ¢, ' ' e (11o)

The purpose of this appendix is to derive uff using three different methods: regulation,
Laplace transform, and time domain. We will show that all three methods lead to the same

solution.

Regulator method

The desired output trajectory (sinusoid) can be generated by the following exosystem

w=sw_[0 w,0>_[0]-w, 0 w= ' 1 ' yd,, = Qw = [1 O ] w.

The solution to the linear regulator problem requires the following matrix equations to be
solved in P and F.

PS = .4P + BF (111)

c2 = cP. (112)

Equations (111) can be easily solved:

<<o) =

Pn = _ P= = 0

P31 = 0, P32 = _-',Pll

P41 = O, P42 -= _'_t::_'.1

F_ _ D F, O.
---- --,_(O)_tl" . -----



Therefore, the required solution is

q_.(0)

0

0

= P32

P42

(113)

._t) = £,wi(t)= Fxvd..(t). (114)

Laplace transform method

Following the procedure outlined in section 7.0.4 one obtains the following equation

_(_) = (s_S + A)-X(L_(s) + _(0) + _(0)) (115)

with
03_ -(¢,03_(_) + (¢, - _(0)/¢_(0))_(_))

A = 1 + ¢,¢_(0)/_,_)(0)' L = (t + ¢,_I(0)/¢_(0))(1 + ¢/)

For simplicity #(s) and _(s) denote the Laplace transorm of the desired output trajectory

and acceleration respectively. The _'(s) has an unstable mode iff

(1 + ¢,_(0)/_(0)) < 0

which corresponds to the condition for which unstable zero-dynamics exists (non minimum

phase condition). For simplicity write

Od
t ! --

q2 = -(1 +_b,_b_(O)/_bo(O)), 03 = _, with q > O,

so that the poles can be written as

w

8stable -- --03, Sunstable _ _r

and the residues as

'0 '0 )R, = 2"-'--_ __Yt'- ' + 1+¢t

To set both residues to zero the unique choice of initial conditions is

_(o) =

_(o) =

which, for the sinusoidal reference trajectory, become

-03_(o.'_,_ - (e,,. - _,',(0)/_'_(0))_.'_ _')

_(0) = o. _(0) = ,_:(1 + _.,.:)(_-> +._,/-')

2._(1 + _,<2)

_/) [03%d_(_) - " ' :"--1 +/¢(-_)) + (g'e w,(O)/¢,o(O))(y(_ ) + _(-_))], (119)
2,I,(_+

(12o)
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Note that if only the unstable residue is set to zero one only requires that

-"" [Je,.- (_,- ¢',(o)/_o(O))_:]0) +_(0) = _:(1 + ¢_:)(_ +_,:)
(121)

For this case, a natural question is how should the additional degree of freedom be used. A

reasonable requirement would be that the initial flexible variables, 6(0) and 6(0), are set to

zero. This cannot be achieved, as it would lead to a contradiction.

To see how this solution relates to the regulator approach, note that

q(t) = c+y(t) + _(t).

Therefore,

Ode,(O) = O, 6d,_,(O) - O, (122)

_(0) ¢d(0), _de,(0)= ¢_(0)od¢,(o)= I¥;,_ - i ¥_ + _(0) (123)

which, after some simple manipulations, can be shown corresponding to the initial conditions

in the regulator approach, Pw(O).

Time domain method

The state space representation of system (115) is

[}]=[:
where L is defined as

-,o=¢t + _,=(¢_ - ¢_(0)/¢_,(0))
L=

(1 + ¢e¢_(0)/¢_(0))(1 + ¢2)

The eigenvectors associated to the stable and unstable eigenvalues are

so that the following diagonalizing change of coordinates can be done

1 1 -1

In this new set of coordinates one has

L

The initial condition %(0) is chosen to be

fo _ - L,,.',. _(01-L e-Z_Y(r) dr = :.)-_(_2 + ,.._)-[+(0)- 2_
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while 3'-(0) is given by

3'_(0)=- ooe:_ y(_-)eT=

Given these initial conditions, one can compute the time evolution and obtain

:r+(t)

"r_(t)

-Le _t I °°= _ e__y(r)d r = -L(_sinw_t + w_ cosw_t)2_(_ 2 + w2) (125)

[3" Z for ] L(Wsinw, t-ca, cosw, t)= e-:' _(0) + _ e_'y(r)dr = (126)2w(w2+ _;j)

Using the transformation T to compute (_,_), q(t) can be shown to be the same as the

regulator solution

1

%..(t) = z + ¢/Y(_)- %_(t) = e_y(t)

¢_ _,(t) + _(t) =/,_y(t).8,,,(t) = 1+

The feedforward can be directly computed from the desired state:

(127)

(12S)

,_,:(t) = (BTB)-'Br(qj,,(t)+ft2qd,,(t))

= 1 [0,/t,¢_(0) + ¢o(_d,, + w28,,t,s)] ya,,(t) = Flyato(t)%_(0) + _2(0)

which is again the feedforward from the regulator approach.
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